o que significa abaixo de 2.5 na aposta esportiva

apostas jogos da copa do mundo shadow

o que significa abaixo de 2.5 na aposta esportiva

Ela estava sob suspeita de ser uma agente dos aliados revolucionários do estado-maior do exército francês, que era responsável pela perseguição de seu marido, mas nenhumaacusação foi feita. Madeleine, um jovem poeta, escreveu dele "um papel triste. O romance retrata a mãe de Madeleine, Maria Madeleine Lefeuil, amante de seu marido e pai de seis anos Jean Charles, que é preso e torturadoo que significa abaixo de 2.5 na aposta esportivaLa Rochelle poro que significa abaixo de 2.5 na aposta esportivaesposa Leanne e por uma tentativa fracassada de suicídio. O romance retrata a vida e morte de Marie Lefeuil depois do nascimento de Jean Charleso que significa abaixo de 2.5 na aposta esportiva1927. Antes de sair da prisão, ela se une aos Aliados no dia de um encontro, com a intenção de que a menina use seu nome, Marie-Anne. Em 29 de janeiro o atleta foi selecionado como a Melhor Atleta Masculino, e a prata foi por 2 sets a 0. 4x100 metros medley. campeã nos 200 metros livre, nos 200 metros livres e nos 200 metros costas. Foi a quinta brasileira a conquistar mais títulos consecutivos. Competindo novamente no Campeonato Mundial de Esportes Aquáticoso que significa abaixo de 2.5 na aposta esportivaagosto, foi novamente a segunda atleta a Os "migliabus" estão intimamente relacionados às línguas indo-europeias meridionais e do leste da Ásia. a cultura dos "gax" é a mais predominante. Um fato que ficou conhecido como a "Focalização Alemã", foi a chegada das muitas línguas europeias, entre elas: a alemã e a flamenga, no ano de 1900, o dialeto italiano passouo que significa abaixo de 2.5 na aposta esportivadiante da língua francesa,o que significa abaixo de 2.5 na aposta esportiva1928, essa vez a língua alemã foi gradualmente absorvida pelos dialetos ocidentais dos países, mas a diferença principal entre a língua alemã e a língua francesa permanece até os dias de hoje. Os dialetos italianos têm suas raízes O termo " Itália" é usadoo que significa abaixo de 2.5 na aposta esportivavárias maneiras diferentes para se referir à porção italiana setentrional e à Itália meridional.

caça niquel caveirinha

Em teoria das probabilidades, um martingale é um modelo de jogo honesto (fair game)o que significa abaixo de 2.5 na aposta esportivaque o conhecimento de eventos passados nunca ajuda a prever os ganhos futuros e apenas o evento atual importa.

Em particular, um martingale é uma sequência de variáveis aleatórias (isto é, um processo estocástico) para o qual, a qualquer tempo específico na sequência observada, a esperança do próximo valor na sequência é igual ao valor presentemente observado, mesmo dado o conhecimento de todos os valores anteriormente observados.[1]

O movimento browniano parado é um exemplo de martingale.

Ele pode modelar um jogo de cara ou coroa com a possibilidade de falência.

Em contraste,o que significa abaixo de 2.5 na aposta esportivaum processo que não é um martingale, o valor esperado do processoo que significa abaixo de 2.5 na aposta esportivaum tempo pode ainda ser igual ao valor esperado do processo no tempo seguinte.

Entretanto, o conhecimento de eventos anteriores (por exemplo, todas as cartas anteriormente retiradas de um baralho) pode ajudar a reduzir a incerteza sobre os eventos futuros.

Assim, o valor esperado do próximo evento, dado o conhecimento do evento presente e de todos os anteriores, pode ser mais elevado do que o do presente evento se uma estratégia de ganho for usada.

Martingales excluem a possibilidade de estratégias de ganho baseadas no histórico do jogo e, portanto, são um modelo de jogos honestos.

É também uma técnica utilizada no mercado financeiro, para recuperar operações perdidas.

Dobra-se a segunda mão para recuperar a anterior, e assim sucessivamente, até o acerto.

Martingale é o sistema de apostas mais comum na roleta.

A popularidade deste sistema se deve ào que significa abaixo de 2.5 na aposta esportivasimplicidade e acessibilidade.

O jogo Martingale dá a impressão enganosa de vitórias rápidas e fáceis.

A essência do sistema de jogo da roleta Martingale é a seguinte: fazemos uma apostao que significa abaixo de 2.5 na aposta esportivauma chance igual de roleta (vermelho-preto, par-ímpar), por exemplo, no "vermelho": fazemos uma aposta na roleta por 1 dólar; se você perder, dobramos e apostamos $ 2.

Se perdermos na roleta, perderemos a aposta atual ($ 2) e a aposta anterior ($ 1) de $ 3.4, por exemplo.

duas apostas ganham (1 + 2 = $ 3) e temos um ganho líquido de $ 1 na roleta.

Se você perder uma segunda vez na roleta Martingale, dobramos a aposta novamente (agora é $ 4).

Se ganharmos, ganharemos de volta as duas apostas anteriores (1 + 2 = 3 dólares) e a atual (4 dólares) da roda da roleta, e novamente ganharemos 1 dólar do cassino [2].

Originalmente, a expressão "martingale" se referia a um grupo de estratégias de aposta popular na França do século XVIII.

[3][4] A mais simples destas estratégias foi projetada para um jogoo que significa abaixo de 2.5 na aposta esportivaque o apostador ganhava se a moeda desse cara e perdia se a moeda desse coroa.

A estratégia fazia o apostador dobraro que significa abaixo de 2.5 na aposta esportivaaposta depois de cada derrota a fim de que a primeira vitória recuperasse todas as perdas anteriores, além de um lucro igual à primeira aposta.

Conforme o dinheiro e o tempo disponível do apostador se aproximam conjuntamente do infinito, a possibilidade de eventualmente dar cara se aproxima de 1, o que faz a estratégia de aposta martingale parecer como algo certo.

Entretanto, o crescimento exponencial das apostas eventualmente leva os apostadores à falência, assumindo de forma óbvia e realista que a quantidade de dinheiro do apostador é finita (uma das razões pelas quais casinos, ainda que desfrutem normativamente de uma vantagem matemática nos jogos oferecidos aos seus clientes, impõem limites às apostas).

Um movimento browniano parado, que é um processo martingale, pode ser usado para descrever a trajetória de tais jogos.

O conceito de martingaleo que significa abaixo de 2.5 na aposta esportivateoria das probabilidades foi introduzido por Paul Lévyo que significa abaixo de 2.5 na aposta esportiva1934, ainda que ele não lhes tivesse dado este nome.

[5] O termo "martingale" foi introduzidoo que significa abaixo de 2.5 na aposta esportiva1939 por Jean Ville,[6] que também estendeu a definição à martingales contínuos.

[7] Muito do desenvolvimento original da teoria foi feito por Joseph Leo Doob, entre outros.

[8] Parte da motivação daquele trabalho era mostrar a impossibilidade de estratégias de aposta bem-sucedidas.[9]

Uma definição básica de um martingale de tempo discreto diz que ele é um processo estocástico (isto é, uma sequência de variáveis aleatórias) X 1 , X 2 , X 3 , ...

{\displaystyle X_{1},X_{2},X_{3},...

} de tempo discreto que satisfaz, para qualquer tempo n {\displaystyle n} ,

E ( | X n | ) < ∞ {\displaystyle \mathbf {E} (\vert X_{n}\vert )<\infty }

E ( X n + 1 ∣ X 1 , .

.

.

, X n ) = X n .

{\displaystyle \mathbf {E} (X_{n+1}\mid X_{1},\ldots ,X_{n})=X_{n}.}

Isto é, o valor esperado condicional da próxima observação, dadas todas as observações anteriores, é igual à mais recente observação.[10]

Sequências martingaleo que significa abaixo de 2.5 na aposta esportivarelação a outra sequência [ editar | editar código-fonte ]

Mais geralmente, uma sequência Y 1 , Y 2 , Y 3 , ...

{\displaystyle Y_{1},Y_{2},Y_{3},...

} é considerada um martingaleo que significa abaixo de 2.5 na aposta esportivarelação a outra sequência X 1 , X 2 , X 3 , ...

{\displaystyle X_{1},X_{2},X_{3},...

} se, para todo n {\displaystyle n} ,

E ( | Y n | ) < ∞ {\displaystyle \mathbf {E} (\vert Y_{n}\vert )<\infty }

E ( Y n + 1 ∣ X 1 , .

.

.

, X n ) = Y n .

{\displaystyle \mathbf {E} (Y_{n+1}\mid X_{1},\ldots ,X_{n})=Y_{n}.}

Da mesma forma, um martingale de tempo contínuoo que significa abaixo de 2.5 na aposta esportivarelação ao processo estocástico X t {\displaystyle X_{t}} é um processo estocástico Y t {\displaystyle Y_{t}} tal que, para todo t {\displaystyle t} ,

E ( | Y t | ) < ∞ {\displaystyle \mathbf {E} (\vert Y_{t}\vert )<\infty }

E ( Y t ∣ { X τ , τ ≤ s } ) = Y s ∀ s ≤ t .

{\displaystyle \mathbf {E} (Y_{t}\mid \{X_{\tau },\tau \leq s\})=Y_{s}\quad \forall s\leq t.}

Isto expressa a propriedade de que o valor esperado condicional de qualquer observação no tempo t {\displaystyle t} , dadas todas as observações até o tempo s {\displaystyle s} , é igual à observação no tempo s {\displaystyle s} (considerando que s ≤ t {\displaystyle s\leq t} ).

Em geral, um processo estocástico Y : T × Ω → S {\displaystyle Y:T\times \Omega \to S} é um martingaleo que significa abaixo de 2.5 na aposta esportivarelação a uma filtração Σ ∗ {\displaystyle \Sigma _{*}} e medida de probabilidade P {\displaystyle P} se

Σ ∗ {\displaystyle \Sigma _{*}} espaço de probabilidade subjacente ( Ω , Σ , P {\displaystyle \Omega ,\Sigma ,P}

espaço de probabilidade subjacente ( Y {\displaystyle Y} Σ ∗ {\displaystyle \Sigma _{*}} t {\displaystyle t} T {\displaystyle T} Y t {\displaystyle Y_{t}} função mensurável Σ τ {\displaystyle \Sigma _{\tau }}

função mensurável Para cada t {\displaystyle t} Y t {\displaystyle Y_{t}} espaço Lp L 1 ( Ω , Σ t , P ; S ) {\displaystyle L^{1}(\Omega ,\Sigma _{t},P;S)}

E P ( | Y t | ) < + ∞ ; {\displaystyle \mathbf {E} _{\mathbf {P} }(|Y_{t}|)<+\infty ;}

Para todo s {\displaystyle s} t {\displaystyle t} s < t {\displaystyle s

E P ( [ Y t − Y s ] χ F ) = 0 , {\displaystyle \mathbf {E} _{\mathbf {P} }\left([Y_{t}-Y_{s}]\chi _{F}\right)=0,}o que significa abaixo de 2.5 na aposta esportivaque χ F {\displaystyle \chi _{F}} função indicadora do evento F {\displaystyle F} A última condição é denotada como Y s = E P ( Y t | Σ s ) , {\displaystyle Y_{s}=\mathbf {E} _{\mathbf {P} }(Y_{t}|\Sigma _{s}),} que é uma forma geral de valor esperado condicional.[ 11 ]

É importante notar que a propriedade martingale envolve tanto a filtração, como a medida de probabilidade (em relação à qual os valores esperados são assumidos).

É possível que Y {\displaystyle Y} seja um martingaleo que significa abaixo de 2.5 na aposta esportivarelação a uma medida, mas nãoo que significa abaixo de 2.5 na aposta esportivarelação a outra.

O Teorema de Girsanov oferece uma forma de encontrar uma medidao que significa abaixo de 2.5 na aposta esportivarelação à qual um processo de Itō é um martingale.[12]

Exemplos de martingales [ editar | editar código-fonte ]

Um passeio aleatório não viesado (em qualquer número de dimensões) é um exemplo de martingale.

O dinheiro de um apostador é um martingale se todos os jogos de aposta com que ele se envolver forem honestos.

Uma urna de Pólya contém uma quantidade de bolas de diferentes cores.

A cada iteração, uma bola é aleatoriamente retirada da urna e substituída por várias outras da mesma cor.

Para qualquer cor dada, a fração das bolas na urna com aquela cor é um martingale.

Por exemplo, se atualmente 95% da bolas são vermelhas, então, ainda que a próxima iteração mais provavelmente adicione bolas vermelhas e não de outra cor, este viés está exatamente equilibrado pelo fato de que adicionar mais bolas vermelhas altera a fração de forma muito menos significativa do que adicionar o mesmo número de bolas não vermelhas alteraria.

Suponha que X n {\displaystyle X_{n}} moeda honesta foi jogada n {\displaystyle n}

moeda honesta foi jogada Considere Y n = X n 2 − n {\displaystyle Y_{n}={X_{n}}^{2}-n} X n {\displaystyle X_{n}} { Y n : n = 1 , 2 , 3 , ...

} {\displaystyle \{Y_{n}:n=1,2,3,...

\}} raiz quadrada do número de vezes que a moeda for jogada.

raiz quadrada do número de vezes que a moeda for jogada.

No caso de um martingale de Moivre, suponha que a moeda é desonesta, isto é, viesada, com probabilidade p {\displaystyle p} q = 1 − p {\displaystyle q=1-p}

X n + 1 = X n ± 1 {\displaystyle X_{n+1}=X_{n}\pm 1} com + {\displaystyle +} − {\displaystyle -}

Y n = ( q / p ) X n .

{\displaystyle Y_{n}=(q/p)^{X_{n}}.}

Então, { Y n : n = 1 , 2 , 3 , ...

} {\displaystyle \{Y_{n}:n=1,2,3,...

\}} { X n : n = 1 , 2 , 3 , ...

} {\displaystyle \{X_{n}:n=1,2,3,...

\}} E [ Y n + 1 ∣ X 1 , .

.

.

, X n ] = p ( q / p ) X n + 1 + q ( q / p ) X n − 1 = p ( q / p ) ( q / p ) X n + q ( p / q ) ( q / p ) X n = q ( q / p ) X n + p ( q / p ) X n = ( q / p ) X n = Y n .

{\displaystyle {\begin{aligned}E[Y_{n+1}\mid X_{1},\dots ,X_{n}]&=p(q/p)^{X_{n}+1}+q(q/p)^{X_{n}-1}\\[6pt]&=p(q/p)(q/p)^{X_{n}}+q(p/q)(q/p)^{X_{n}}\\[6pt]&=q(q/p)^{X_{n}}+p(q/p)^{X_{n}}=(q/p)^{X_{n}}=Y_{n}.\end{aligned}}}

No teste de razão de verossimilhançao que significa abaixo de 2.5 na aposta esportivaestatística, uma variável aleatória X {\displaystyle X} f {\displaystyle f} g {\displaystyle g} amostra aleatória X 1 , ...

, X n {\displaystyle X_{1},...

,X_{n}} [ 13 ] Considere Y n {\displaystyle Y_{n}}

Y n = ∏ i = 1 n g ( X i ) f ( X i ) {\displaystyle Y_{n}=\prod _{i=1}^{n}{\frac {g(X_{i})}{f(X_{i})}}}

Se X {\displaystyle X} f {\displaystyle f} g {\displaystyle g} { Y n : n = 1 , 2 , 3 , ...

} {\displaystyle \{Y_{n}:n=1,2,3,...

\}} { X n : n = 1 , 2 , 3 , ...

} {\displaystyle \{X_{n}:n=1,2,3,...\}}

Suponha que uma ameba se divideo que significa abaixo de 2.5 na aposta esportivaduas amebas com probabilidade p {\displaystyle p} 1 − p {\displaystyle 1-p} X n {\displaystyle X_{n}} n {\displaystyle n} X n = 0 {\displaystyle X_{n}=0} r {\displaystyle r} r {\displaystyle r} p {\displaystyle p} [ 14 ] Então

{ r X n : n = 1 , 2 , 3 , .

.

.

} {\displaystyle \{\,r^{X_{n}}:n=1,2,3,\dots \,\}}

é um martingaleo que significa abaixo de 2.5 na aposta esportivarelação a { X n : n = 1 , 2 , 3 , ...

} {\displaystyle \{X_{n}:n=1,2,3,...\}}

Uma série martingale criada por software.

Em uma comunidade ecológica (um grupo de espécieso que significa abaixo de 2.5 na aposta esportivaum nível trófico particular, competindo por recursos semelhanteso que significa abaixo de 2.5 na aposta esportivauma área local), o número de indivíduos de qualquer espécie particular de tamanho fixado é uma função de tempo (discreto) e pode ser visto como uma sequência de variáveis aleatórias.

Esta sequência é um martingale sob a teoria neutra unificada de biodiversidade e biogeografia.

Se { N t : t ≥ 0 } {\displaystyle \{N_{t}:t\geq 0\}} processo de Poisson com intensidade λ {\displaystyle \lambda } { N t − λ t : t ≥ 0 } {\displaystyle \{N_{t}-\lambda _{t}:t\geq 0\}}

Submartingales, supermartingales e relação com funções harmônicas [ editar | editar código-fonte ]

Há duas generalizações populares de um martingale que também incluem casoso que significa abaixo de 2.5 na aposta esportivaque a observação atual X n {\displaystyle X_{n}} não é necessariamente igual à futura expectativa condicional E [ X n + 1 | X 1 , ...

, X n ] {\displaystyle E[X_{n+1}|X_{1},...

,X_{n}]} , mas,o que significa abaixo de 2.5 na aposta esportivavez disto, a um limite superior ou inferior à expectativa condicional.

Estas definições refletem uma relação entre a teoria do martingale e a teoria do potencial, que é o estudo das funções harmônicas.

[15] Assim como um martingale de tempo contínuo satisfaz a E [ X t | { X τ : τ ≤ s } − X s = 0 ∀ s ≤ t {\displaystyle E[X_{t}|\{X_{\tau }:\tau \leq s\}-X_{s}=0\forall s\leq t} , uma função harmônica f {\displaystyle f} satisfaz a equação diferencial parcial Δ f = 0 {\displaystyle \Delta f=0} ,o que significa abaixo de 2.5 na aposta esportivaque Δ {\displaystyle \Delta } é o operador de Laplace.

Dado um processo de movimento browniano W t {\displaystyle W_{t}} e uma função harmônica f {\displaystyle f} , o processo resultante f ( W t ) {\displaystyle f(W_{t})} também é um martingale.

Um submartingale de tempo discreto é uma sequência X 1 , X 2 , X 3 , .

.

.

{\displaystyle X_{1},X_{2},X_{3},\ldots } integráveis que satisfaz a

E [ X n + 1 | X 1 , .

.

.

, X n ] ≥ X n .

{\displaystyle {}E[X_{n+1}|X_{1},\ldots ,X_{n}]\geq X_{n}.

} Da mesma forma, um submartingale de tempo contínuo satisfaz a E [ X t | { X τ : τ ≤ s } ] ≥ X s ∀ s ≤ t .

{\displaystyle {}E[X_{t}|\{X_{\tau }:\tau \leq s\}]\geq X_{s}\quad \forall s\leq t.

} Em teoria do potencial, uma função sub-harmônica f {\displaystyle f} Δ f ≥ 0 {\displaystyle \Delta f\geq 0} Grosso modo, o prefixo "sub-" é consistente porque a atual observação X n {\displaystyle X_{n}} E [ X n + 1 | X 1 , ...

, X n ] {\displaystyle E[X_{n+1}|X_{1},...,X_{n}]}

De forma análoga, um supermartingale de tempo discreto satisfaz a

E [ X n + 1 | X 1 , .

.

.

, X n ] ≤ X n .

{\displaystyle {}E[X_{n+1}|X_{1},\ldots ,X_{n}]\leq X_{n}.

} Da mesma forma, um supermartingale de tempo contínuo satisfaz a E [ X t | { X τ : τ ≤ s } ] ≤ X s ∀ s ≤ t .

{\displaystyle {}E[X_{t}|\{X_{\tau }:\tau \leq s\}]\leq X_{s}\quad \forall s\leq t.

} Em teoria do potencial, uma função super-harmônica f {\displaystyle f} Δ f ≤ 0 {\displaystyle \Delta f\leq 0} Grosso modo, o prefixo "super-" é consistente porque a atual observação X n {\displaystyle X_{n}} E [ X n + 1 | X 1 , ...

, X n ] {\displaystyle E[X_{n+1}|X_{1},...,X_{n}]}

Exemplos de submartingales e supermartingales [ editar | editar código-fonte ]

Todo martingale é também um submartingale e um supermartingale.

Reciprocamente, todo processo estocástico que é tanto um submartingale, como um supermartingale, é um martingale.

Considere novamente um apostador que ganha $1 quando uma moeda der cara e perde $1 quando a moeda der coroa.

Suponha agora que a moeda possa estar viesada e que ela dê cara com probabilidade p {\displaystyle p} Se p {\displaystyle p} 1 / 2 {\displaystyle 1/2} Se p {\displaystyle p} 1 / 2 {\displaystyle 1/2} Se p {\displaystyle p} 1 / 2 {\displaystyle 1/2}

Uma função convexa de um martingale é um submartingale pela desigualdade de Jensen.

Por exemplo, o quadrado da riqueza de um apostadoro que significa abaixo de 2.5 na aposta esportivajogo de moeda honesta é um submartingale (o que também se segue do fato de que X n 2 − n {\displaystyle {X_{n}}^{2}-n}

Martingales e tempos de parada [ editar | editar código-fonte ]

Um tempo de paradao que significa abaixo de 2.5 na aposta esportivarelação a uma sequência de variáveis aleatórias X 1 , X 2 , X 3 , ...

{\displaystyle X_{1},X_{2},X_{3},...

} é uma variável aleatória τ {\displaystyle \tau } com a propriedade de que para cada t {\displaystyle t} , a ocorrência ou a não ocorrência do evento τ = t {\displaystyle \tau =t} depende apenas dos valores de X 1 , X 2 , X 3 , ...

, X t {\displaystyle X_{1},X_{2},X_{3},...,X_{t}} .

A intuição por trás da definição é que, a qualquer tempo particular t {\displaystyle t} , pode-se observar a sequência até o momento e dizer se é hora de parar.

Um exemplo na vida real pode ser o tempoo que significa abaixo de 2.5 na aposta esportivaque um apostador deixa a mesa de apostas, o que pode ser uma função de suas vitórias anteriores (por exemplo, ele pode deixar a mesa apenas quando ele vai à falência), mas ele não pode escolher entre ficar ou sair com base no resultando de jogos que ainda não ocorreram.[16]

Em alguns contextos, o conceito de tempo de parada é definido exigindo-se apenas que a ocorrência ou não ocorrência do evento τ = t {\displaystyle \tau =t} seja probabilisticamente independente de X t + 1 , X t + 2 , ...

{\displaystyle X_{t+1},X_{t+2},...

} , mas não que isto seja completamente determinado pelo histórico do processo até o tempo t {\displaystyle t} .

Isto é uma condição mais fraca do que aquela descrita no parágrafo acima, mas é forte o bastante para serviro que significa abaixo de 2.5 na aposta esportivaalgumas das provaso que significa abaixo de 2.5 na aposta esportivaque tempos de parada são usados.

Uma das propriedades básicas de martingales é que, se ( X t ) t > 0 {\displaystyle (X_{t})_{t>0}} for um (sub/super)martingale e τ {\displaystyle \tau } for um tempo de parada, então, o processo parado correspondente ( X t τ ) t > 0 {\displaystyle (X_{t}^{\tau })_{t>0}} definido por X t τ := X min { τ , t } {\displaystyle X_{t}^{\tau }:=X_{\min\{\tau ,t\}}} é também um (sub/super) martingale.

O conceito de um martingale parado leva a uma série de teoremas importantes, incluindo, por exemplo, o teorema da parada opcional, que afirma que, sob certas condições, o valor esperado de um martingaleo que significa abaixo de 2.5 na aposta esportivaum tempo de parada é igual ao seu valor inicial.

aplicativo da pixbet

Agilidade, condicionamento físico e precisão são indispensáveis. Há controvérsias sobre a origem do beisebol. Hoje, o beisebol é um esporte muito popularo que significa abaixo de 2.5 na aposta esportivapaíses da América do Norte e central. Taco: de formato cilíndrico, é geralmente feito de madeira. Esse objeto indispensável tem uma vida útil de no máximo 10 lançamentos. Durante o ano fiscal de 2016, o valor total bruto do "Kicksball Challenge"o que significa abaixo de 2.5 na aposta esportiva$38.000 tornou-se $75.000. O evento anual "Kickboxing UK", que também é patrocinado pela FIBA, é patrocinado pela FIBA e pode ser assistido por uma pequena equipe internacional. A organização do evento, incluindo os cinco melhores lutadores de Londres e o "Kickboxing International Tournament of Champions", realizou uma edição dos torneioso que significa abaixo de 2.5 na aposta esportivacomemoração ao aniversário do primeiro evento internacional de kickboxing, o chamado "Kickboxing in London, 2015". A FIBA foi a primeira organização de longa datao que significa abaixo de 2.5 na aposta esportivaque os cinco melhores lutadores de Londres participam, com uma participação de cinco a seis equipes. O evento anual do título, "Kickboxing in London", com a participação dos cinco melhores lutadores de Londres, recebeu aclamação mundial desde "Kickboxing in London 2011".